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The carbor-carbon bond activation is one of the most chal- Scheme 1. A Plausible Mechanism for C—C Bond Cleavage of
lenging areas in organometallic chemistiPespite the significant ~ Alkyne ~ . _
developments in this field during the past decade, the cleavage of ® 2a Picsy Oy~ N

' 5 P 5 N)A\ . )L
an alkyne triple bond has remained only as a few examples 12 o N [Rh] CSHH/\HLMecsHH Me | CsHii” H
including alkyne-ligand scission on transition metal compléxes, s CoHyq CsHiq "

. . . .+
oxidative cleavagé alkyne metathesisand so or?.In the course % Picay, 10 PiC\H
of our studies on the chelation-assisted activation-eHGnd C-C . (\/LMB 0 0 HL L Ve
bonds in organic moleculég,we found that the reaction of alkynes R W -5 Me T e

. . . CsH1s ST
and allylamines resulted in the cleavage of the@triple bond 13a L 12 |

through ana,3-unsaturated ketimine intermedidtélowever, an
allylamine as a substrate caused a limitation to its versatile use.

Table 1. The Reaction of Various Aldehydes (1) and Alkynes (2)

Herein, we describe a new protocol for the cleavage of the carbon R'CHO (1) 1) 3a (3 mol%) 4 (200 moi%) o
. . . . . . s s 5 (50 mol%) 6 (10 mol%) )]\/Rz
carbon triple bond in alkyne, which is triggered by a chelation- R R® (2 Toluene, 30°C, 12h R’
assisted hydroacylation. (A/2=171)  2)H0" 4
In our reaction, acetaldehydgd) reacted with 6-dodecyn@4) sofated vield of
in the presence of (PRRRhCI 3a, 5 mol % based orRa), entry RL() RLRY(2) pmductya 7
cyclohexylamine4), 2-amino-3-picoline), and aluminum chloride PhCHCH, (15) R R 'M 2b) 90% (7¥b)
. 73 = = Me 0
(6) to afford 2-octanone7@) after hydrolysis (eq 1). > R2= R3= Et (20) 91% (70)
1) 3a (5 mol%) 4 (330 mol%) [o] 3 RP=R=Pr (Zd) 94% (7d)
% ol% 4 R2= Me, R= t-Bu (2¢) 33% (7h)
MeCHO + CsHy—==—CsHi t:(|60 mo'1/;)0§ C“?;:M) Me)l\/csHﬂ ) 5 GsH11 (10) (2d) 91% (7€)
1a 2a 2 gag;i”e' ’ 6 PhCH; (1d) (2b) 82% (7f)
(1a/2a = 3/1) 90% (based on 2a) 70 p-MeOGsH4 (le) (2b) 54% (79)

A plausible mechanism for the reaction is depicted in Scheme
1. The first step might be condensation of aldehydeand5 to
give aldimine8, which reacts with alkyn2ato giveo,f-unsaturated
ketimine 9a. A conjugate addition of cyclohexylaminkinto 9a
and subsequent retro-Mannich type fragmentation of the resulting
B-aminoketiminel 0 afford aldiminelland enamin&2.8° Enamine
12then isomerizes into ketiminE3a, which is hydrolyzed to yield
ketone7a.

The reaction of various aromatic and aliphatic aldehydes with
alkynes gave corresponding ketones in good to moderate yields
(Table 1). When an internal alkyne bearing different substituents
such as 4,4-dimethyl-2-pentyn2g} was used for the reaction with
hydrocinnamaldehydelb), only 1-phenyl-pentan-3-on&’lf) was
obtained in a 33% yield along with,$-unsaturated ketong&4a
(47%), a hydrolysis product of intermediate ketimine (entry 4). This
result implies that the reactivity and regioselectivity of this reaction
largely depend on the bulkiness of substituents in alkynes. While
two regioisomers of the initial hydroacylation product, thatliéa
and14b, are possible from the reaction db and2e, a bulkytert-
butyl group suppresses the formationldf. Furthermore, subse-
guent fragmentation o, 3-unsaturated keton®4awas inhibited
due to the steric hindrance of thert-butyl group, which gives
rise to a low yield of7b as compared to the case of 2-butyé,(

a A parenta,S-unsaturated ketorledaremained unreacted (47% yield).
b The unreacted starting material was detected in 35% GC yield. 100 mol
% of 5 was used.

It should be noted that an aldehyde, which was generated through
the fragmentation of.,5-unsaturated ketone (Scheme 1), could react
with the remaining alkyne. Therefore, we envisaged a serial
cleavage of alkyne induced by a small amount of external aldehyde,
a hydroacylation-triggered -©C bond cleavage of alkyne. For
example, wher2a was subject to react with a small amountiaf
(5 mol % based o0r2a) in the presence of [(§114).RhCI], (3b),
4-diphenylphosphinobenzoic aciily) as an external ligandi, 5,
and6, 6-dodecanonela), as well as 2-octanon&4, 4% GC yield)
were obtained in an 87% yield after hydrolysis (ed2).

1) 3b (5 mol%) 15 (20mol%)
4 (150 mol%) 5 (100 mol%)
6 (10 mol%)
fa + 24— ene 130°C, 12h
(1a/2a=1/20) 2) H,0"

CsHqq Cehiy

16a (87 % isolated yield) (2)
+

7a (4 % GC yield)

A possible mechanism of this reaction is depicted in Scheme 2.
The initial step might be chelation-assisted hydroacylatio2af
with 1a to give o,f-unsaturated ketimin®a, which undergoes

entry 1). fragmentation to afford aldimingl and ketonera. The reaction
o o of the resulting aldimind 1 and remaining alkyn2a gives another
o,p-unsaturated ketimin®b, and then ketond6a through the
PhW"B“ PhWMe subsequent fragmentation @b and hydrolysis. A newly generated
Me 14a +BU  14b (not observed)

aldimine 11 could react with2a along the catalytic cycle.
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Scheme 2. A Proposed Mechanism for the
Hydroacylation-Triggered C—C Bond Cleavage of Alkyne
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Scheme 3. A Crossover Experiment
1) 3b (5 mol%) 14 (20mol%)

1a + CgHy;—=—CsH4; + Ph—==—Ph 4 (150 mol%) 5 (100 mol%)
(2a) (2f) 6 (10 mol%),toluene, 130°C, 12h
(1a/2a/2f = 1/2/2) 2) H30*
o] (0] (0]
Me)K/CSHM CeH )J\/CSHM CeH Ph
7a *"""16a ST q7a
(7% based on 2a) (19% based on 2a) (12% based on either 2a or 2f)
)o]\/ i
Ph Ph )K/CSHH
M 7h P60 PR b

(9% based on 2f) (14% based on 2f)  (21% based on either 2a or 2f)
L J L 1 L ]
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Scheme 4. A Ring-Opening Oligomerization of Cyclododecyne

(29)

1) 3a (2 mol%, based on 2g)
4 (100 mol%) 5 (20 mol%)
15(4 mol%)
toluene, 100°C, 72h "

2) Hz0"

(o)

1d+‘

(1d/2g = 1/5) 2g
N
Ph >

A direct hydroamination oRais also a possible mechanism for
the formation ofl6a'! Therefore, the crossover experiment was
performed using two different alkyne®a and diphenylacetylene
(2f) as shown in Scheme 3. In this reaction, crossover products,
17aand17b, were obtained as well as noncrossover proddda,
and16b, in a ratio of 50/50 (33% fofl6a and 16b, 33% for17a
and 17b, determined by GC analysis). This result indicates that
the mechanism for the formation d6is a chelation-assisted hydro-
acylation-triggered mechanism rather than the direct hydroamination
of alkyne where crossover products could not be forAted.

Encouraged by the results, we attempted to apply the protocol
of alkyne cleavage to the ring opening of strain-free cycloalkyne,
where consecutive hydroacylation and fragmentation would result
in the ring-opening oligomerization of cycloalkyne to yield polyke-
tone. For example, cyclododecyriggf was reacted in the presence
of 20 mol % of1d under the catalyst system 84, 4, 5, and15 at
100 °C for 72 h to give polyketone&8 in a 30% isolated yield
(based on total amount of all starting materials, Scheme 4). In this
reaction,o,f-unsaturated ketimind9a is an imine of the initial
hydroacylation product, which is identified &8aafter hydrolysis.
Successive retro-Mannich fragmentation and hydroacylation gave
polyketonedl 8 after hydrolysis. The degree of oligomerization was
determined by ESI-MS, which showed that polyketoh8k—e (n
= 1-4) as well asl8awere formed in this one-pot reaction, and
among them polyketonE8c(n = 2) was a major component (Figure
1).

In conclusion, we demonstrated the cleavage of theCGriple
bond in alkyne, utilizing a chelation-assisted hydroacylation fol-

18a-e (n= 0-4, respectively)

. .Cy
—_— Phw

19b-e (n=1-4)
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Figure 1. ESI-MS spectrum of polyketones8.

lowed by retro-Mannich type fragmentation of the resulting-
unsaturated ketone under the catalyst system of Rh(l) complex,
2-amino-3-picoline, cyclohexylamine, and Lewis acid. This one-
pot protocol was also applied to the ring-opening oligomerization
of cycloalkyne.
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